

"ADVENTURES" PROJECT, 2001-2004 (ADVANCED TRANSPORTS FOR UNIVERSITY EDUCATION IN SARAJEVO) European Commission, CD_JEP-15045-2000

- TEXTBOOK Mathematics for Transport and Traffic

Authors:

prof dr Kemo Sokolija, University of Sarajevo

with contributions by

prof dr Bruno Dalla Chiara, Politecnico di Torino

Politecnico di TorinoDepartment DITIC -Transport
Italy

University of Sarajevo

Faculty of Transport, Traffic and Communications
Bosnia-Herzegovina

University of Southampton

Transportation Research Group
United Kingdom 1

Aim of the textbook: introduce the students to the main mathematical methods which are widely used in traffic and transport engineering, by using phenomena occurring in daily life, just in the abovementioned fields.

- Methodology: the text is organised so to each chapter constists of three steps;
 - Definition of basic terminology and parameters which influence real phenomena in traffic and transport;
 - Solution of simples examples of models representing existing situations or systems;
 - 3. Illustration of the procedures of the application of considered methods on the examples taken from real situations.

VOLUME ORGANIZATION: INDEX

A. PROBABILITY AND STATITICS

- 1. Elements of theory of probability and statistics
 - Introduction
 - Definition of probability
 - Discrete distributions
 - Continue random variables
 - Continuous distributions
- 2. Linear and non-linear regressions
 - Simple linea regressions
 - Correlations
 - Multiple linear regressions
 - Direct non linear regressions

- 3. Testing of statistical hypotheses
 - One parameter test
 - Test of linear model
 - Student's test
- 4. Application of statitics in traffic and transport engineering
 - Normal distributions
 - Bernoulli distributions
 - Poisson distributions
 - Testing of statistical hypotheses
 - Studies of speed, travel time and delays

B. <u>OPTIMISATION</u>

- 1. Classical optimisation
- 2. Linear programming
- 3. Simplex method
- 4. Integer programming
- 5. Transportation problem

C. Theory of queues applied in transportation

- 1. General definitions
- 2. Queueing systems "born and die"
- 3. Markov chains
- 4. Network of chains
- 5. More general queuing systems
- 6. Examples: applications in transport systems